If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+X=64
We move all terms to the left:
X^2+X-(64)=0
a = 1; b = 1; c = -64;
Δ = b2-4ac
Δ = 12-4·1·(-64)
Δ = 257
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{257}}{2*1}=\frac{-1-\sqrt{257}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{257}}{2*1}=\frac{-1+\sqrt{257}}{2} $
| -10x-(-35)+24=89 | | 3x+95+25=180 | | 6x-3(-2x+8)=-132 | | 100+60x=180 | | 11x-16=4x+19 | | 4x^2+2x-10=9x-9 | | -7x+43=180 | | -3x-4(6x+9)=180 | | 5/2x+31x=38 | | 21+9j-10=(-277) | | 4/7t=24 | | Y=40*40x | | (3+)x÷7=1 | | 7(e-8)=5-4e | | 0=5x^2+16x-16 | | 3+(x÷7)=1 | | -h/3-17=25 | | 5y(3−y)(4y+1)^2=0 | | 7(x+9)+9=9x-2(x-3) | | 4^(x)+4^(x-1)+4^(x-2)=336 | | 8.50+1.08=t | | 2(5-3x)=-6x+10 | | 17h-9h-h=7 | | 26(s+10)=832 | | 31=4–9y | | -10+2c=5+20c-15c | | (-6b)-7=47 | | -111=-6x+3(7x+3) | | u+1/2=16/4 | | -16u-6u+-7u-3u-20u=18 | | 3x+2(-2x-3)=-18 | | -11u+-12=-122 |